
• .
~

- .—~ -.~~~~ ~~~~~~~~~~ ‘-• —- -- — —

:~

Tartan Reference Manual -15-

6. Oe&~itions end Declarations
‘def-deci’ ~~ ‘dsclaratiosi I ~ sod dst’ I (routin. d f) I ‘tyss dot’ I ‘tumin c dot’ I ‘enstv

I ~‘u~orts MuaI # • I esiperts <quil .d’~ i iesep1ri i ’ I deabis ‘10.
I pr.t <pvoc cslI’,~~~garp

‘decI.r.tl on’ ::—

‘mod d.f ~ — modal <10 ‘mod test’
‘mod test ’ :;— ; <code body’ I remote ret)

• ‘rO ut~n. def’ : peas <o~~ <proc test’ I tens <10 <tune test’ I presses ~0 ‘ares test’
‘I I fun. — (<~.111°, I ismopa • dims

‘tunc text ’ ~ (‘formats) i ‘10 s ‘type’ ; <bleeP) I ‘remote i.isl’
‘Proc text ’ ~ — (‘foemsle’ k <biocP) I ‘resist e Wet’
<type det’ ~ — type <typ e name ’ ((<formal.))) • <type’
‘gorieric dot) n— generic m ode. *10 (<formal.)] ‘mod test’ I gesisris tens *10 ~ dormais? 3 <fun. t~.t)

I generic pros 40
~
<formats’ 3 <proc tOil) I genesis presses <10 (‘I orma10 3 <proc test’

‘remote iris t) ~. s~~~ li0 (<actu l k -:-~(’10)
<forinsls (‘b.rsdlng’ 407 * <type name’
<binding. _- ‘tmsty~ I var J ss.s$ I ma.disst I r,sslt

1.1. Decla’utions

Some examples are ;

var xi R ea l
ton i ~:. ~ us
var fue l. Hue2 . Hue3: Co l or
vii - T i n t * — erwus t saffrori . ~~ e. fucPusiI octiret
var Vi irrey(S. .7) .4 tnt
var fl1:llerli lS) . Pl2sflarli (7)
manIfest P1: Reel :- 3.14

The syntax for declarations allows tPwee kinds of abbreviations. If the irWtf.llzatlon expres sion
appears, the type of the variable is evident from the rexpr and this °:itype, may be omitted In
addition, lists of ‘id.s with the san e types or bindings may be condensed. These abbrsviadone are
illustrated by the (allowing five declarations, all of which have the same effsct

v.r s.~~ 5. S
var s. t js t n t . S
var s t . S.

~
is S

var s s ln t :. I. 45 t nt i s I
var islui t i s 5; var ~a l n t i s S

Elaboration of a declaration causes instantiation of an object which is the variable. Each varfab4e
he. a type and a value. The type is determined when it is instantiated, but the value may be changed
by further elaboration of the pro~ am. A variable may be restricted to be coast (value fixed at block
.ntry) or manifest (value fixed dwiiig Iranatation).

Elaboration of a declaration proceed . as follows.

- Evaluate the <.xpr~, it present It must be pi’saant in manifest or coast declarations. It suet
be manIfest In manifest declarations.

- ~ the cblndinp is msnIfe4 bind the valus of the nixpr’ to the denWisr(a)~
- If the <blndnp is coast or var, elaborate My <actual.. in the <types end instantiate a new

variab le with the indicated type and attribute, for each Identifier. If there wee en <expri ,
assign It. value to each of the new variables.

When the type Is dynsmlc, the dadaratlon supplies the <type nlme onty (no attributes). hi this case,
onty the pointer l~ allocated at block e*r the attributes are &~ il ad when the dynamic type Is
actiselly (dynamically) allocated

- . -~ - __~~~~~__ ___ --.-- -• • ._ •_ • ___. _ __,__•._ _rn.• --—-— -.-— - -- ----—- - - - - - • - - - — —- --- - —---- — —•.- —

— - --7- — —•-— --—-.—•--,
~

,—•‘-• •-- .

~

.— - - - --
~~~~~~~ 

— — — ‘- .
~
‘
~~~~

-
~~~~~~~~~~~~

. 
— — V-— -- • - - ,  — ----

~~~
- —-- - — -

~
-

Tartan Reference Manu al -16-

52. Modules

An example is.

unedid s Coun tsr O.f;

experts Coun t er • Rsen t • I ncr , Vii us;
type Coun tsr • tnt;
pros Resstlr.oui t C:Count,r h b.gin C ;s 5 snd;
pro c t rucr(v.r C:Couri t sr) ; b.gIn C t C • 1 end ;
tune Valus fesed C:Countur)x*Coun ter ; bsgm * is C end
end

The elaborati on of a moó.~e takes place s*sing the elaboration of declara tion for the block in
which the module is defined. This elaboration consists of elaborating the declar ations of the medic in
lexical order , then elaborat ing the statements of the media.

A medic or routine ither its identifiers for defini tions (meckOs, routines, exceptions, and types) froni
its enclosing scope. It m a y explici tly import identifier, of objects from that scope, provided the
objects have global sxtenL A mactie, but riot a routine, may export defini tion and object identifiers to
its enclosing scope. Types, named routines, field accessors for record s, and variables are exported by
including their names in the export s list of the media. The right to apply i nfi x operators,
constructors, subscript., .a1I , or the create command for a type I vs exported by including the
special names V1nhl~, Tconstr , T’s~b,cr, Tall, and Tcrnt., respectively, In th, exports list Uterais
of enumerated types are exported automatically if the types are exported.

6.3. Routines

Some example, are

proc ~~(var i s I n t) ; b.gid w is - s; end
peas G I, ConiG ISI
tv,,s I aN I I lxi OsjriT)

~s booleess; b.gum,
~ is lx • nil) snd

flails 4. 1a , bulorp) cigor p;

Imports Bia s ;
c is goro ’ (a. lef t ib . left .B l au . a .rlgli t .b.rlgfl t4l•s)
m d

A rou tine is a dosed scope whose body is a block. This its body contro ls extent for local
declarations, but does not inherit idsntl fier s for (non-man ifest) objects or l abels, The <formats , list
declare , the identifiers for parameter,.

A rout ine may be a function (func), which returns a value and has no visible side effects ; it may be
a proceda’e (pr oc), which can modify its parameters but must be called a. a state msnt or it may be a
process, which is a potentiaily-parulial proc ed,,. Special type-specific rout ines vs described in
Appendix 1.2.

Routine names may be overloaded by binding the same identifier to several definitions with different
number , or types of parameter ,. The furucti ont s for which special lnRx notatien Ii prov ided Sr.
obvious candidate. for overloading.

It a <binding> in a røullns header Is omitted, it Is assumed to be coast Th. ~e.ult binding may be
used only in procedres. No duplication of Identlfl~~e within the <formal,, list Is permitted , and
parameter names may not conflict with declarations or imports in the routine body.

6.4. ExceptIons
Some example. on.

useptien TooSig, Too$~.I I . Late , Singular
disable Tool i g, TooS..ll -

_ _ _ _ _ _ _ _ ~
_

~i::~ ”~ ~~

-

I

Tartan Reference Manuel -17-

• The scope of en exception name is the block in which It i~ declared A disable declaratIon in an
inner block suppress.. detection of the exceptions it names. A handier ctsase associates recovery
cods with a statement that m a y generate an exception (see secti on 4 7).

- The di sable declaration permits exceptions to be individually suppress ed with in a givsn scope.
Should an exception ocos when its detection I. suppress.d, the can.e~ iencss one not defined. An

• exception must not be signalled or radeclarad in a scope in which II is suppressed Not. that
suppression of en exception is not an seaertion that the condition that gives rise to the exception will
not occur.

Standard exc*ptions will be declared in the global extort

LS. Type Definitions

Sonic examples are:

*ype Counter s m t
typo f l atr ixi n s I nt l — .my(1..n.1..n) at

A user may introduce a new type into his program with a type definition. The type dsflnftion itself
merely introduces the <type names and defines the representation of the type. Operations are
intr oduced by wr iting routines whose formal parameters are of the newly-defined type. Scope
boundaries, particularly mcdi. boundaries, play no role in the definition of the type. There Is, es a
conseqjence, no notion of the complete sat at operations on a type.

A type definiti on may be parwtetenize d. The bindings in the formal parameter list roust be coast or
manifest If a <binding> is omitted, it will be essisned to be coast. The names of the formal parameters
of the type ate available throughout th, elaboration of the program as constants, celled attributes.
They are accessed by treating the var daM> as a record and the type attribute as a field.
Attributes for primitive types are given as part of the type daikxllons.

WIthin the acop. in which the type I, defined, the qjalifisr Nap may be used to Indicate that the
abject named by the identifier Rap ~ iellfl,. Is t. be treated as if It had the underlying type. This
allows operations on the new type to be written using operation, on its representation When no
ambigUty arises, the Rep ~~atlflcation may be omitted

6.5. Genetic Definitions

Some example. are:
-

goneric pros Rese t (T i tue.) (or xi 7) , bs~in x is x’•ln end
pros Rss.tCoior Is Reset tCo l or i
pr os Res.tX Is Re,. t (Saoolsj
ios*ul. St.cli Is a.._n.d (SteckOof)

goosek sos~ d. R I rigOe t Cxi Int l $
bests..~ .srts Rin g . Next ;
type R ing • Si,sdIl,S,I,K—1);
foss NeiutfR ;AlnqlN , eisdfl, e,Lx-Z), bo~~ N is ued INi4 ,E) s s.d
•nd

oodiis QS Is Ring OsniS)
• medids R$ is Rlng O .fI!I

-

A generic definition Is syM.. tlUNy like the c& , .epoedng specific definition except that it is
pre fixed by th. word gsnarlc and it may have a set of genaric parameter. (enclosed in sq.*e
br ackets) alter the definition name. ~ar generic definitions, type is acceptable as a formal <type name>.

The actual parimetsrs e~pp8ad In an instan tiation of a generic definition may be any defined
identifiers, Including those for variables, fimct$ene5 types, or modiiss, or any expression When the
generi c definition ii Instantiated, the t,~t of the actual paresM.r replaces the IdentIfi ers that
represent th. formal parameters. Iii. substitution i. done on a lexical, rather than a str ictly textual,
beels. That Is, the idsndiflers In Pta generic definition are renamed a. necessary to e-eid conflicts
with the identifier. in the actual pon imatars.• I_ -~__~--~ --

~~~ 

1_ .~~ _ _ _ _ _ _-

~~



Tartan Referenc e Manual -18-

Both generic definitions and remotely-defined modules or routInes may be incorporated in a program
as remote I nstances. A remote instance may be an instantia tion of a generic definition or a reference
to a definition g iv n  elsewhere.

A mact ie or routine that is used by the program but whose definitIon Is given elsewhere (e.g., in a
libr ary) Is incorporated by writing Is assumsd(cid>) as the body of a modie or routIne definition. The
<id, is used by a pra çnat to locate the remote definition.

A generic definition is inst anti ated by referring to it as the body of a mactie or routine definition.
The effect of the instantiation is as if the gener ic definition were lexical ly substituted in place of the
reference to it. That is, th, body of the mactie or routine being defined becomes a copy of the
generic definition.

An instantiation of a gener ic defi nition may be usad as the body of a specific module or routine. The
usual restricti ons on defining new ident ifiers apply to the mod.ile or routine being defined In terms of a

Generic type defini tions ari se from generic modules. They vs instantiated when the moctis is
instantiated. Thereaf ter, they may be used in declarations or definitions.

If the generic definition has generic parameters, the actual parameters supplied with the
instantiation oust have correponding types and be syntactically siitable for substitution.

It a generic definition is instantiated more than once in a scope, ambiguou s names may be
intro duced. The usual ru es for resolving such ambiguities apply.

6.7. Translation Issues
An example is:

er.s ~~ t i . l ze4spece)s LI . t l nq (O I f )  gs..p

A program is a cblock>. The extent defined by the outer block of the program is the global extent
The translator may be guided by .<pragmat>s. Pra~~Ms have the same syntax as procedure calls.

The set of pre met names and the interpretations of the arguments s.. detsrm,ned by each trans lator.
Translators will ignore pregmnats whose names they do not recognize.

A pr ogram may be broken into separately defined segments. This decomposition roust take place in
the global extent The .awts of separat , definition ar e mo~ iaa and routines. The definition

,,,odii$ 0 ls asswui.d(II

in a segment his the effect of making the semantics of the segment the sanue as if the (separat ely
defined) text of Q had been sthstit’~tid for Is sssume4l) . The identifier I refer-s to a file, library, or
other facilIty for stori ng separately defined segments. The relation between the identifier I and that
storag e facility may be established by a pragmat

It is a matter of optimization whether the separate definition is included as text or separ ately
transl ated and linked in. In order t~~ perform Independent translation of a separ ately defined component,
it is necessary to embed the modie or n uns being translated in an environment that supp lies
definitions for all the names it inherits or mpcrts. This envirwwasnt m ist form a complete progra ms.
It is assumed that the translation system prevides commands for selecting which components of such a
translati on to save end for deter mining whore and ii, whet form they are to be saved

• I

- i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _  _ _  -•---~~~~~-~~~~~~~~~~~~~~ .


Tartan Reference Manuel -19-

I. Standard Definitions

L 1. System-Dependent Characteristics

The translate,- tar each system is assumed t~ provids a moctie In the global extant that defines
appropriate system constants. Such constants vs assumed at various points in the language definition;
these and c.rtan ethers are summarized here in the form of a skeleton moduls.

msdu.~ Sue;

.xpsris . . . I s~~or ts a l l dsllni t ion s bel ou
type m t — fbed(. • . 1 I .opeper late ts tPis secP~fls

I Note ln t . t tI n and lnt Jts.. glv. r ings
typs Re• I — h usH . • .) 1 approori.t . to tn. .ach l ns

I Attr i but es gIve r ings, pr ecisIon , sc.Is

• . . I constan ts tna t desc i b. proper t le. of tM
I ob ject sichu l ne

prss . • . I procedures for accss.Ing m a c i h I t i s s of the
I aesr.tlnq and ~j I s .qj. tes.

• . I Sj~stsu—ds fInsd s~cspt ions sucl~ as Assertion , B.dA.slgn. . . .

‘ii

L~~ Properties of Types
All types have aselgrwnent operators and routines for conversion to approp riate other types. In

partic tiar , the scaler types Piave routines for convertin g to and from character strings. Afl noniscalir
types have constructors. The sections below sketch some important propertiss of the built-in type..

1.2 1. Fbsod
. Uterils: ~glt sbln~~Attnlbies: Mn, Max, PrecisIon, Scale

Infi x operations: Arithmetic and relational
Special routine,, roundIng. truncation

1.2.2. Fleet
Uterals: dIgit strings with decimal paint
Attributes: Mn, Max, Ra dIx, Pr clacn, Mri6xp, Mextxp
Infi x operations: AnitPmssdc and relational
Special routines: raadng. truncation

1.2.3. (m.unera tlons
All emanaratlone are orde red The Iltsrals are assumed t. appear In the dedaretlen In increasing

H order.

As given In definition
Attributes: Mn, Max -

IndIa opersilons Ralatland
Special routines: misc, prad

_ _ _ _ _ _ _ _ _ _L _________________ __________________ -—- -

r’~~~ - -

Tartan Reference Manual -20-

1.2.4.. dsalean

true, felse
Attributes: none
Infix operatione logical
Special routines: none

1.2.5. Charact ers
Literal, Quoted characters
Attributes: Mn, Max
In fix operat ions: none
Special rcutine, as for emsneratiens

1.2.5. Latche s

A latch is a simple spinlock for nvtual exclusion. If the lafch is apse, it is avsilabls for slezwe: if it
is dosed, a Lock command will welt on iL

Uter als: open dosed
Attributes: none
Infix operat ions: non.
Speci al routines: Lock, IfLock, Unlock

1.2.7. Arr ays

Uterals: none
Attributes: Ran ge, EltType
Infix opera tions: none
Special operations: subecnlpl~ ,ubarrsy, c.tanatlon, i~psr bound, lower baird

i.~.s. set.
‘ Sets ore booleen vectors on which some addlional operations are defined.

Uteral s: empty
Attributes: EItTyp., MaxSize
Infix operation.: logical
Special operations: si~ scnlpt

1.2.9. Dynemic Types
-

Uterals: nil
Attributes: Th. named variable does not itself Pieve attr ibutes , but the dynam Ic

var iable that it r fvori, ..a may.
Infix operations: none
Special operations: ~lI denotes whole value of dynamic objacti os dIstinguished from

the rsforence~ A dynamic cen*uctor allocates a new d~~~~~ object
Special routines: none

1.2. 10. Records
Litera ls: none
Attributes: indIvldesliy defined with record type
Inf i x operations: none
Special operations: field selection, canaiructari
Special routines: none

-

-
_ _--__~- ---- ~~~— -~~~~~~ ~~~~~

— — -- ~~~~~~~~~~~~~~ ~~
—---

~—,---.-—-, ---~-----~~- . ——- -— - —. —,—-—-.--- —— -— .- ——--

‘- - - - — .— .----— —---- - __
~~~

__ -~~~~~~ -~-~._ - -_ ~~~~~~~~~~~~~~~~ -~ -‘- -

Tartan Reference ~4ws~af
1.2.11. Var Ian ts

Uterals: none
Attributes: inctvialj ally defined with vari ant type — -
Infix operations: none
Special operation , variant mj st be designated to reference contents ‘ - - -Special routines: none ‘ -

1 2.12. Strlngs
Quoted strings

Attributes: t..ngth
Infix operations: none
Special operations: subscript, subetrlng. catenation - - ,. ~~~ “

1.2.13. ActIvat ions

Ut.rals: mint / / /
Attributes: none
Infix operations: none
Special operations: create
Special routines: To chang. stats: Actlvst.(A), Suspeni~A), UrfockAndSuspend(A,L),

IkilockAndActivite(A~~ LockAndSuepend(A,L), Lcd AndActivate(A,L),
Tartnin.t.(A)

To ~iery stats: lsMnt(A), lsAct(A), I.Susp(A), lsTervn(A)
To obtin actnams: NameOf(A), Me()
To .ini exceptios: NotUy(A)
Other Prlorlty(A), SatPrlorlty(A), ‘flms( A)

where A is an activation or actneme and L is a latch
Assignmant csus.s the BadAssign oscaption if either the value or the variab le t which it is being

assigned is in a state other than met

1.2.14. Actname,

Utsrals: mint
Attributes: none
I nfix operations: none
Special operatIons: none
Special routines: Same as for activations

1.2.15. FlI.. -

A minimal Input-output facility will be provided.

1.3. Alphabets

The following context-free u.~ slftutlons redIxs the alphabet used In this report to the standard
— r a ~ e ASCII easeL Note that some Identifiers are prs— im,,.t...J a remit.

For the publication character Siàstlb4e the ASCII sblng
lower case t.z içper case A2

C.

‘S

I’
A and
v si
( (C

}

I



-

Tartan Reference Manu al -22-

IL Co~ected Synt ax

‘const’ ~ — ‘digit” ( . ‘digit” I’ I trw. I lalue nil I dss.d I spec I f .‘u,Iy
I (constn*tor’ I ‘~~~ I ‘qua i~~~ ‘ ‘co~st’ $ ‘type’ • ‘const’ I

.cconstructoq. : ( ‘esp’r’ ) I l l  ‘ootion’’t ‘ospr ’ }, ) I — ‘cisa”~~
Cv5r id’ — ‘qual id’ I ‘vsr i~~ ( ‘actual.’ ) I v 1 . ‘td’ I ‘o r  i~~ ( ‘r un .’ ) I Rpe~
‘raflgS ~ ~~ ‘up,’ . . ‘espr~ I ‘type ’
‘Option’ :~~ ‘cOnst’ I ‘r ui’je ’ ),.

‘ <qual id’ :. { ‘Id> ‘) ‘Id>
‘Id. ~ — defter’ detter or — or diiit>
‘.xor’ ~ — ‘u’o, ’ ‘yr ~~ $ ~jnsp’ ‘corel’ I ~~~~~~~~ 4.jp e cdt’

I unoc’ ( ‘irer’ ) I I ‘exer’ ). ~d> I ‘sip ” ‘binop’ ‘up”
~UflOO~ ~ — • l . ’
‘binop’ ~

. 5 I / I • I — I  ( I 1 I ) I H . l * I A I c I , i d I v l c e r I t
‘lunc calt ’ :— ‘qua Id> ( ‘actual.’ )
‘actuals~ ~ —

‘stmt ’ :— ‘proc c a ’ l ’ : s t m t ’ l pty’ l ’bioc.’
‘yr Id’ ~

— f if ‘isp” tll.n ‘stud’.’ sill ‘isp” 111.0 ‘stmt ’~’ J’ ( .lu. ‘st.d ’. N
I c .  ‘isp” I ec ‘option’ —) ‘stout’’ ) ~~~~I wilds ‘ispr’ do (stout ’1’ sd I tsr ‘I~~ ill (rw e’ ds ‘stiut ’1’ oil
I~~slo ’Id’

‘qud ~d’ I rsslpd I assurt ‘expr ’
I ~stMt> { so ‘Id’,’ •‘ ‘stout” } )
I crosS. ‘yr id> ( ‘actu al’ )

‘pr oc cdl’ ~ — ‘gust Id’ ( ‘actuas’ )
<block” ~. ‘cod. body’
<cods body’ ~~

— b.~$~i ‘dsf dsd’; I’ ‘s~pd’,0 lIld

‘type’ ~~ flw.d( ‘actual.’ I I II..t( ‘setuas’ 1$ ilsuls. I laid, I dir I 111.4 ‘actual’ )
l .mio( d d ’J l s u w . ’ (~~~-cch.r’ ),’ J I t expr. . . ex p r ~I sst( ‘actual,’ I I str inp( ‘actu al.’ )
I w’sy ( ‘run~e” ) ii ‘type’ I rucril ( ‘d.d.r.tion’,’]
I vdlaai ‘dsct railon’ ( (on ‘option’ -, ‘type’ Ii
I ~ynon s (type’ I attlvillu. it ‘qua id’ I actremu
I ‘type ~ams’ ( ‘actuas’ ) •

~ — 11x.d I NusSIbsit.sot l.luIiI dir l flts l .sl$drIng
J a’uu.m( cid’’) l a’ouiuu~~~~’ct~sr’ ) ’ J  —

I srvw C ‘type “a”ui’,’ ~ of ‘type urns’ I record ( ‘Id” z (type AIM .’ ),‘ 3
I vart aM ( ‘type ,urne’ ( on ‘nation’ •) ‘type naum’ )‘ 3’

dyniuuic ‘type n.rns’ I .dlvulsn ( ‘p~a .ii icb,sous
I ‘aiMI Id’ ( ‘qua ~~,•

‘dsV -dscl~ ~ ‘ucloration’ I ‘mod dsP I ‘routl,i. def’ I “yee del’ I ‘pnsrlc dsfs- $ ‘imply’
I h.,srls (onal Id’ • I soports ‘gust ~~ • I ~~~~~~~~~ ‘Id’ • Osdilo ‘ld> •
I prop ‘proc cal11I’~ 5

<decl ar at ion’ ~~ ‘binding’ ‘Id >’ s ‘lype’ . ( . ‘eipr~ • ~ ‘innatug’ (~~~~‘ ‘type nurnu’ 3,’
‘nwd del’ ~ — rn~~~o ‘Id> ‘mod tswt’
(mod siP 

~ — ; ‘code body’ I ‘remote Inst.
‘routin. del’ ~ - pros ‘Id’ ‘proc test ’ J lure ‘Id’ ‘f*jnc test’ I p,’s.suu ‘Id’ ‘proc text’

I lure • ( ‘, op~ I ncp~ 3 — ‘tunc text’
‘f unc text’ ~ — ( ctorouas’ ) ‘Id> , ‘lype’ ; ‘bloc.’ I ‘remote aM’
‘proc t w t ~ ~. ( ‘formal’ h ‘blocs’ I ‘r.~uoIe 11.1’
‘type del’ .. typo ‘typo ~ame’ ((dsrm als’ I 3° • ‘type’
‘generic dot’ ~- goner mode. ‘Id> ( ‘formal’ I ‘mod t..t ’ I g.ii..te twit ‘Id> ( dormas’ 3 ‘Inc text’

I generic pros ‘Id’ ( dori,ials) 3 ‘proc text” I gausris pnseus ‘Id> t ‘tormite’ 3 ‘proc test’
‘remote Inst. :~~ is ‘qua Id> ‘uctuas’ 31  is =~~:~ (‘40 )
‘format,. ~ ( ding. ‘id> i ‘type nc’
cblndlng> :: ‘imply’ I vu I most I muulfust I rsusdt



SCCIJ~IrI CL A~~~ I ’ - I C  - - - , i . ,  .‘, --  .~ • - 4 -  • - ( • —

RE P O R1L )ULO ME ~~T A TI O~4 PAGE 
- I nf ;FouE co ’u~LET:,:c FoR ’f

• I .  k E P O R T  kUMU~~ R - . .,
~OVT ACC C~~SION ~~~ 3 R~~C l P I E N T ’ $  C A T A L O G  NUMdER

AFOSR -TR- 7 8 - 1 5 2 1  
-

- 
4. T iTLE (ned £,b:Itl.) - 

3. TY P E  OF REP O R T  C PERIOD COVERED

TARtaN 4 LANGUAGE DESIGN FOR THE IRONMAN -REQUIRE- Interim
- 

~~NT: REFERENCE MANUAL • 6~ P [ R O R M I O . R E P O R T ~~~~u u 5 E R
- CMU—CS—78—133

7. AuT ,iOR (.) ~ . C O N T R A C T  OR G R A N T  NUMBER(.)

~fary Shaw, Paul Hilfinger, Win. Wuif 
- 
F44620--73-c-0074 ‘

~~~~~

-

5. PERFORMING OR~~A N IZ A T I O H NAM E AN D A C O R E S S ID. PROGRA M ELEMEN T . ~~~O)ECT , TASX
- AREA C WORK UNIT NUMOERS’

-
- Carnegie-~Ie1lon Univ ers~ ty . -• Depart m ent of Computer Sciaace

- -

~~~~~~ - 
.. 

-

- 
Pittsburgh , PA 15213 A02466/7 -

- It . CONTROLLING OFF ICE  N A M E  AND ADDRESS - 12. REpORT OA TE
•Def~nse Advanced Research Projects Agency Ju~~ 1978 

-

- - 
1400 Wilson Blvd . - 

- - 13. NU MSEROF PAGES - 
-

• Arling ton , VA ~2209 22
t4. MOH ~~T O R I N G  A G E N C (  ii AM 6 AODRESS~II dJil.r.nt Item Controlling Olflc.) %~~ SECURITY CLASS. (of (hi. s.poft)

- . - 

- 
. Air Force Office of Scientific Research (NM) - UNC lASSIF IE D

- - Boiling AFE - DC 20332 - 
- is.. O E C L A S S I F I C A T I O N / 0 0 0 N G R A O I N G  --

- 
, - - - . SCHEDULE

- as. D I S T R I B U T I O N  S T A T E M E N T  (01 Iii ’ a R.port) 
- 

- 
-

Approved for public release , dis tribution unlim ited

• 17. O I S T R I B U T I O N  S T A T E M E N T  (of fe. .b.U.ci .nt .r .d In Block 20, II dill .,.ne (fan R.poit) - -

- 
- - *5. SUPPLEMENTARY NOICS . 

- 
- . - 

-

- IS. KEY WORDS (Continui. on r.v.,, . aid. II n.e..ao y aid Id.n(lly by block numb.,)

-
. .

-
.

- - . - 
C ~~~~,

. . 
- 

• - -

N 
- 

-

20. ABSTR ~~~~ (CneuSnUO WI SO~~•lD~ aid. H ,.c...ny aid Id.ntlly by block number) 
- -

- 

. - ~~Ta rtan is an experiment in ~language design . The goal was to determine .- 
-

.. 
- whether a ‘4simple ”languag e could mee ,t substantially all of the irorunara~ • 

-

- 
requirement s fQr a çommop -~--~~der prograinm’ing languageY . 

. • .
. ‘ - -

- - 
t4~~e. ~j-C i~ ,~~J i.’ ~~~ - 

- 
. - -

~~
- -~~-. 

- .W,,~ ~~~~~~~~~~~~~~ c this expetimen’t~ because -w~1believ.ed th~t ai1 the designs
done in the first phase of tI’e DOD effori were too large and too com~le~.

- 

,

- 
- W-n.--~~~ that complexity~às a serious failure of the desi gf~~; excess cdmplexjt~ ~~~

DD ~~~~ ,~ ~ 473 ~~~~~~~ OF I NO V 1 5  uS O B S O L E T E  U~ C1.ASSIFIEt)
S/H 0 l 0 2 0 I 4  560 $ sEc u nuT y C L A S S u r u C A T , O w  or THI S  P A G E  ~~~~~~ o. .gnt...ut )

_ _  -



~~~~~~- - - -

!

_ _ _
C

_ - -

a - -
INCLAISIFIED . .

-

‘0. Abstract continued. -

in a programming language can interfere with its use , ev~n t o the extent that any
beneficial properties are of little consequence. ~~~w~nted to find out whether the
requirements inherently lead to such complexity or ~rhether a substantially simp1~~~L~’7
language would suffice .

~~~Three ground rules drove the experiment. First , no more than two months —— April 1 to
Aay 31 —— would be devoted to the project. Second , the languag e would meet all the
i r orunan requirements except for a few points at which it would anticipate Steelman
requirements . Further , the language would contain no extra features unless they resulted in a
simpler language . Third , simplicity would be the overriding objective .

The resulting language , Tartan , is based on all  avai lable info rmat ion , including the design~
already produced. The languag e def ini t ion is presented here; a companios ru-port provides an

-
- overview of the languag e , a number of exam ples , and more expository explanations of some of
the languag e features.

We believe that Tartan is a substantial improvement over the earlier designs , particularly -

its simplicity . There is , of course , no objective measure of simplicity , but the syntax , the
size of the definition , and the number of concepts required are all smaller in Tartan.

Moreover , Tartan substantially meets all c-f the Ironman requirement. (The exceptions lie in~
a few places where we antici pated Steelman requirements and where details are still missing

~from this report.) Thus , we believe that a simple language can meet the ironman requirement.

~rartan is an existence proof of that.

must emphasize again that this effort is an experiment , not an attempt to compete with
DOD contractors . Tartan is ,however , an open challenge to the Phase II contractors : The
language can be at least this simple~ Can ”~~~ do better?

~~~~~~~~~~~~ __

_

_ _ _

